###
DOI:
本文二维码信息
多因素影响下基于Bagging-NSGAII的数控铣削稳定性预测与优化研究
邓聪颖1, 游倩1, 赵洋1, 林丽君2, 殷国富3
(1.重庆邮电大学先进制造工程学院;2.成都大学机械工程学院;3.四川大学机械工程学院)
Research on the stability prediction and optimization of CNC milling based on Bagging-NSGAII under the influence of multiple factors
摘要
相似文献
本文已被:浏览 168次   下载 0
投稿时间:2022-09-15    修订日期:2022-10-23
中文摘要: 数控机床铣削过程中出现的颤振失稳,是限制数控机床加工效率和加工质量的关键因素。铣削稳定性与工艺参数、工艺系统动力学特性密切相关,而工艺系统动力学特性又随加工位置、刀具悬伸量的变化或刀具的更换而变化。因此,针对多因素影响下的铣削稳定性预测和无颤振工艺参数选择问题,本文以数控机床各向移动部件位置、刀具直径、刀具悬伸量和切削参数为变量,提出一种基于引导聚集算法(Bagging)与带精英策略的快速非支配排序遗传算法(NSGA-II)的切削稳定性预测与工艺参数优化方法。该方法首先采用正交实验设计离散数控机床的工作空间,在每个加工位置对不同悬伸量下的刀具进行锤击实验,由此得到各把铣刀对应的刀尖点频率响应函数;然后,在不同工艺参数方案下进行铣削稳定性理论预测,进而引入Bagging算法建立以各向运动部件位置(x, y, z)、刀具直径(d)、刀具悬伸量(h)、主轴转速(n)、切削宽度(ae)、每齿进给量(fz)为输入的极限切削深度(aplim)预测模型;在此基础上,采用该Bagging模型作为铣削稳定性约束,以加工位置和工艺参数{x, y, z, d, h, n, ap, ae, fz}为优化变量,建立最大材料切除率和刀具寿命的多目标优化模型,采用NSGA-II算法求解该模型得到Pareto最优解集,并结合熵权法和优劣解距离法(TOPSIS)选出Pareto解集中的最佳解。以一台三轴立式加工中心展开实例分析,所建极限切削深度Bagging模型的预测误差为2.99%,且铣削加工实验表明获取的{x, y, z, d, h, n, ap, ae, fz}最优配置可实现稳定铣削,验证所提方法的可行性和有效性。
Abstract:The chatter occurrence in the milling process is a key factor that limits the machining efficiency and quality. The milling stability is mainly dependent on the process parameters and the dynamic characteristics of the tool-workpiece system. However, the system dynamics vary with the changes of the machining position and tool properties. Considering these multiple influence factors, a method is proposed to predict the milling stability and determine optimal machining parameters based on the bootstrap aggregating (Bagging) and non-dominated sorting genetic algorithm-II (NSGA-II). First, the orthogonal experiment design is used to divide the working space of the machine tool into different machining positions. Under each position, the impact testing is carried out at the tool tip for different tool overhang lengths to obtain the corresponding frequency response functions (FRFs). Then, the limiting axial cutting depth aplim values are theoretically predicted using the tool tip FRFs and machining parameters. With the sample information, the bagging algorithm is taken to establish a model of predicting the aplim, where the inputs are the displacements of the moving parts (x, y, z), tool diameter (d), tool overhang length (h), spindle speed (n), cutting width (ae) and feed rate per tooth (fz). Taking these process parameters {x, y, z, d, h, n, ap, ae, fz}as the design variables, a multi-objective optimization model is constructed to balance the machining efficiency and tool life. Additionally, the pre-established aplim predication model is utilized to express the milling stability constraint. Then, the multi-objective optimization model is solved by the NSGA-II and the Pareto-optimal set is obtained. The entropy weight method and the technique for order preference by similarity to an ideal solution (TOPSIS) are combined to select a unique optimal solution from the Pareto-optimal set. A three vertical machining center was taken to carry out a case study. The prediction accuracy of the established Bagging model of aplim was 2.99%, and no chatter was observed when performing the milling test with the finally determined optimal process parameters. These experimental results validated that the feasibility of the proposed method for predicting the milling stability and selecting optimal process parameters under multiple influence factors.
文章编号:202201000     中图分类号:    文献标志码:
基金项目:国家自然科学基金:(51705058基于动态信息链的高速切削稳定性空间分异特征与工艺参数优化研究),四川省科技计划资助:(2022YFG0225面向口腔临床医疗椅旁数字化研磨雕铣设备研制及应用)
Author NameAffiliationPostcode
deng cong-ying  400065
you qian  
zhao yang  
lin li-jun  
yin guo-fu  610065
作者简介:作者简介
引用文本: